If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-16x-1=0
a = 6; b = -16; c = -1;
Δ = b2-4ac
Δ = -162-4·6·(-1)
Δ = 280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{280}=\sqrt{4*70}=\sqrt{4}*\sqrt{70}=2\sqrt{70}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{70}}{2*6}=\frac{16-2\sqrt{70}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{70}}{2*6}=\frac{16+2\sqrt{70}}{12} $
| -(x+4)=4x+3 | | 2÷3x+1÷x=30 | | (4v-1)=(3v+4) | | 5(x-6)+3=18(3+2x) | | 5=-4.9t^2+1.5t | | 6+3•d=768 | | -16x^2+12x+800=0 | | 5(6s+s)=35 | | 25x+40=5x+80 | | 7x-4=15+3x | | 15x+40=10 | | 13x+2=212 | | 25=45-7x-6x^2 | | 15(5+n=) | | -t=-9(t-10) | | 6x+6-4(x+1)=9x+8 | | 5x-+1=2x-5@x=-2 | | 39-3x=12x | | 4x^2+26x-36=0 | | 4x²-26x+36=0 | | -3=4w-8 | | 0.4x-0.8(5-x)=5.2 | | x/(x^2+64)=0 | | 1/2x-1/3=5/3 | | 5x+22=28 | | 3x^2+147=0 | | 9v-2v=42 | | 21-(5x-(3x-1))-x=5x-12 | | 3a+4-a=14 | | -7v+4(v-4)=-10 | | 11/17=x/10 | | -2(u-6)=3u+2 |